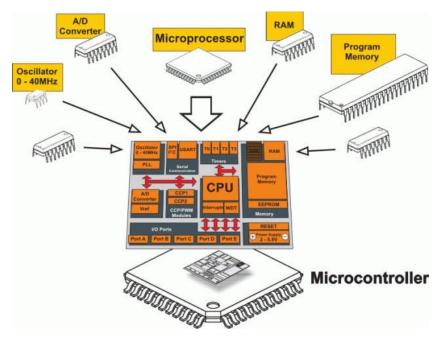
ME-410: Introduction to Arduino and its applications

Ziqiao Wang, Prof. Jamie Paik Reconfigurable Robotics Laboratory EPFL, Switzerland



What is Microcontroller?

- **Definition**: A compact integrated circuit designed to govern a specific operation in an embedded system.
- Components:
 - Processor
 - memory
 - input/output pins
 - peripheral

Why we need microcontroller?

- Size and portability
- Power consumption
- Real-time Operation

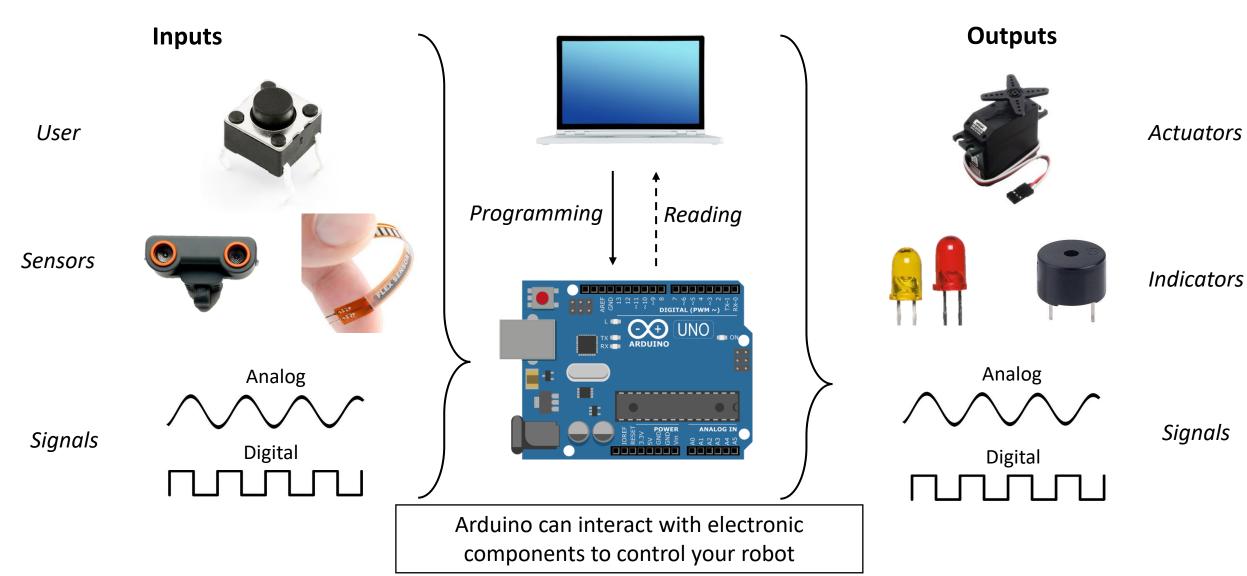
Source: Max Embedded

What is Arduino?

Open-source hardware and software company that designs and manufactures single-board microcontrollers

Code and designs files are accessible by anyone!

- No "black box" = more control
- Completely free
- Don't rely on a company
- Active and large community



Provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs.

Arduino in ME-410

Choose your board

Features

- ADCs
- DACs
- GPIO
- Wifi
- Bluetooth
- ...

Specs

- Clock speed
- Memory
- Interrupts
- Power consumption
- ...

Integration

- Size
- Weight
- Input voltage
- Output voltage
- Output current
- ...

Sensors

- Gyro
- Accel
- Magnetometers
- Gesture
- Humidity
- Sound
- ...

Official arduino board

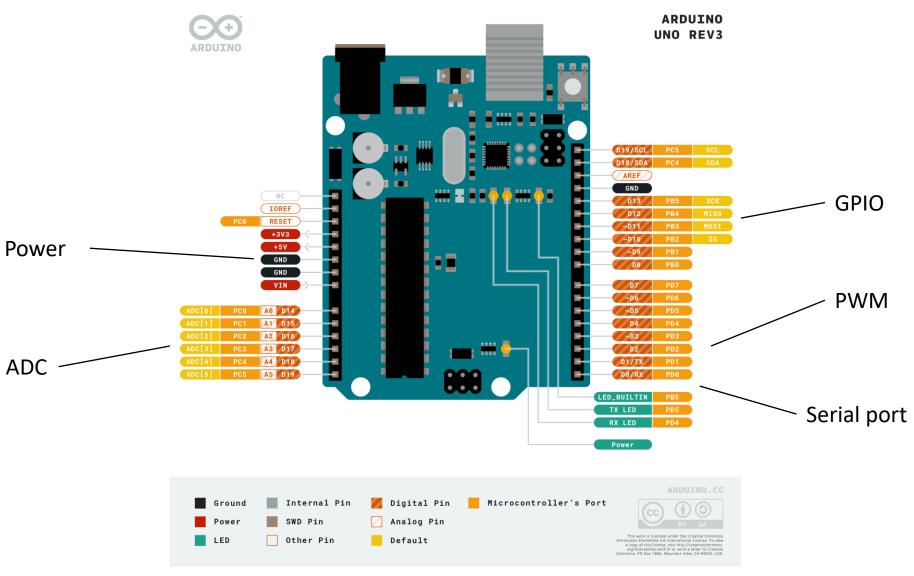
Variety of Features,
Specs and Integrations
capabilities

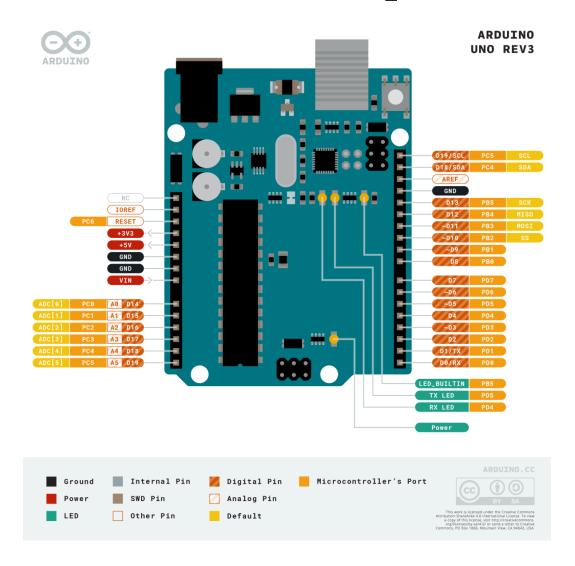
Adafruit feather

Small and powerful arduino-like arduino, with a lot of additional sensors integrated

Raspberry PI

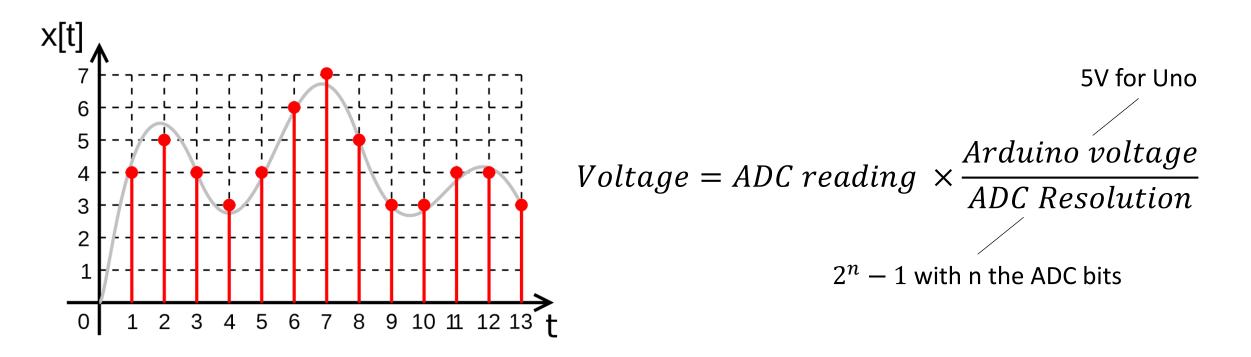
Not an arduino, more like a small computer = great processing power and GUI, but only GPIO is available




Arduino Uno Pinout

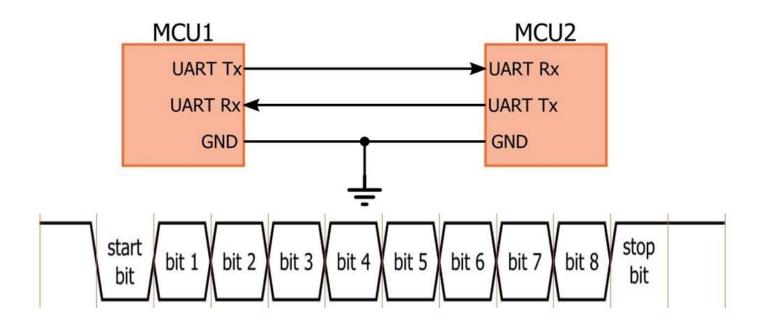
Arduino Uno specifications

Features:


- ADC
- UART (serial interface)
- Interrupts
- PWM
- GPIO
- •

Analog to Digital Converter

ADC, or Analog-to-Digital Converter, translates analog signals into digital values for microcontrollers like Arduino to read.

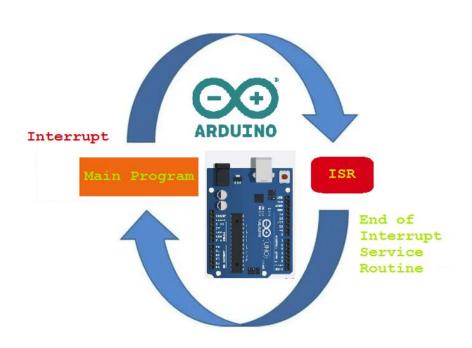


Universal Asynchronous Reception and Transmission(UART)

UART (Universal Asynchronous Receiver/Transmitter) is a hardware communication protocol used for asynchronous serial communication between devices.

Key Terms

- Start bit: The first bit of a one-byte UART
- **Stop bit:** The last bit of a one-byte UART transmission.
- Baud rate: The approximate rate (in bits per second, or bps) at which data can be transferred.

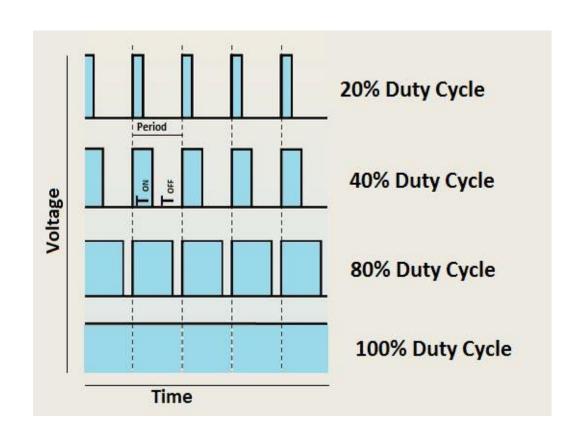

Interrupts

What is an Interrupt?

 A signal to the CPU to pause and handle external events, enhancing real-time responsiveness and computational efficiency.

Key Concepts

- Types: Hardware and Software Interrupts.
- **Purpose**: Ensure timely system responses and allow multitasking during I/O operations.
- **Usage:** Employed to handle tasks like responding to a button press, receiving data, or managing timed events in embedded systems.



Pulse Width Modulation (PWM)

PWM stands for Pulse Width Modulation and it is a technique used in controlling the brightness of LED, speed control of DC motor, controlling a servo motor or where you have to get analog output with digital means.

- TON (On Time): It is the time when the signal is high.
- **TOFF (Off Time):** It is the time when the signal is low.
- **Period:** It is the sum of on time and off time.
- Duty Cycle: It is the percentage of time when the signal was high during the time of period.

Arduino Uno specifications

Specs are available on the <u>arduino store</u>

Microcontroller	ATmega328P
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
PWM Digital I/O Pins	6
Analog Input Pins	6
DC Current per I/O Pin	20 mA

Flash Memory	32 KB (ATmega328P) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
Clock Speed	16 MHz
LED_BUILTIN	13
Length	68.6 mm
Width	53.4 mm
Weight	25 g

Select the peripherals

DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V

Dimensions	40.8*20.1*38mm
Product Weight	44g
Output Shaft Style	25T
Angle Rotation	180 degree
Voltage Range	4.8~7.2 Volts
No-Load Speed(6.0V)	0.19sec/60°
No-Load Speed(4.8V)	0.23sec/60°
Stall Torque(6.0V)	4.1kg.cm
Stall Torque(4.8V)	3.2kg.cm
Max PWM Signal Range(Standard)	500~2500usec
Travel per µs(out of box)	/
Max Travel(out of box)	/
Pulse Amplitude	3~5V
Operating Temperature	(-)10 to +50 degree C
Current Drain -idle(6.0V)	20mA
Current Drain - no-load(6.0V)	200mA

sensors

What is the robot current configuration?

- Joints position
- Speed
- Power consumption
- Heat

What is applied on the environment?

- Force
- Contact

Localise the robot:

- GPS
- Vision

Interact:

- With the environment (ex: move an object)
- With the human (ex: assistive Robotics)

Robotic sensors are used to estimate a <u>robot's condition</u> and <u>environment</u>. These signals are passed to a <u>controller</u> to enable appropriate behaviour.

Most of the time, the controller is an algorithm implemented on a microcontroller (ex: Arduino) that controls the actuators depending on the sensor data

Arduino sensors

ME-410 Mechanical Product Design & Development

Sensor classification

By working principle:

- Resistive
- Capacitive
- Magnetic
- Optical
- MEMS
- Sound
- ...

By function:

- Vision and Imaging Sensors
- Temperature Sensors
- Radiation Sensors
- Proximity Sensors
- Position Sensors
- Motion Sensors
- Photoelectric Sensors
- Particle Sensors
- Metal Sensors
- Pressure Sensors
- Level Sensors
- Leak Sensors

- Humidity Sensors
- Gas and Chemical Sensors
- Force Sensors
- Flow Sensors
- Flaw Sensors
- Flame Sensors
- Electrical Sensors
- Contact Sensors
- Non-Contact Sensors

By return values: digital or analog

Position sensing summary

Resistances

- For small motion range
- Should be in contact with the moving part
- Rotational and Linear
- Continuous

A typical single-turn potentiometer

Encoders

- For small and large range of motion
- Should be in contact with the moving part
- Rotational and Linear
- Discrete

Incremental optical encoder
Broadcom

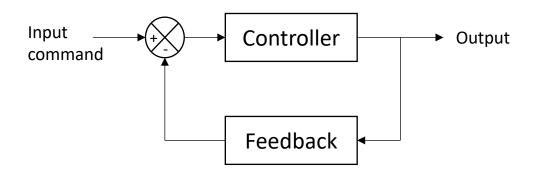
Distance

- Contactless sensing
- To choose depending of the object characteristics
- Continuous or discrete

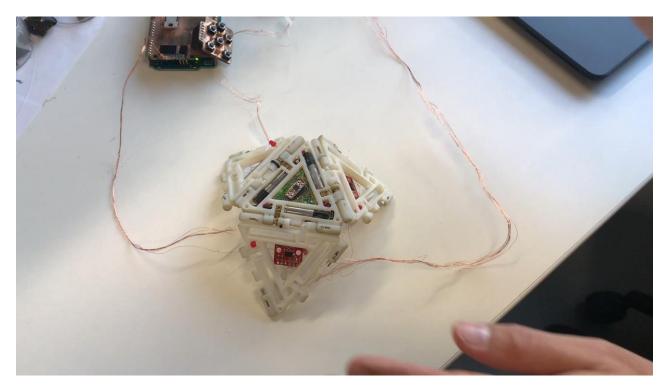
Ultrasonic sensor

Acceleration/speed

- Easily integrable
- Requires integration to access the position



9DoF-IMU-Breakout SparkFun



Application example

- Inertial Measurement Unit give the robot's configuration
- Motors' relative rotation angles with encoders
- Interaction with human through distance sensors on the legs

Huang, J. L. et al. (2018). A reconfigurable interactive interface for controlling robotic origami in virtual environments. *The International Journal of Robotics Research*, *37*(6), 629-647.

Download basic usual IDE

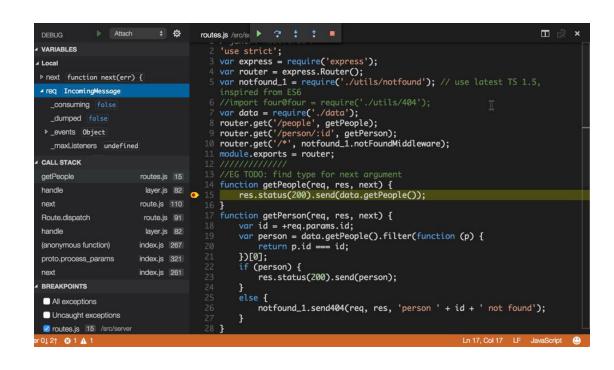
Pros:

- Perfect for beginners
- Easy to use
- Great Serial plotter
- GUI makes it easy to change the board connection parameters

Cons:

- No color highlight
- No autocomplete
- Difficult Multi-file programming
- It's like programming on a notepad





Visual studio code

+ PlatformIO

Pros:

- For real programmers
- Multi-file organisation
- Programs easily transportable
- DARK MODE
- Works with a lot of boards

Cons:

- Serial communication extremely basic
- Not as straightforward to use than the official IDE

Arduino is C++

(So you can use any C++ IDE)

Basics in Arduino programming

Arduino is embedded C made easy

Run once at the code initialization (board startup)

Arduino code must contains two functions:

```
void setup(void)
{
}
```

Init

- Variables
- GPIO
- Timers
- Interrupts
- All the system parameters your program needs

Infinite loop, equivalent to while(true)

```
void loop(void)
{
}
```

Run continuously while the board is power supplied

- Read sensors
- Send control commands
- Communicate with the computer
- Contains the program logics

Basics in Arduino programming

Example

Declare variables as global (variables declared inside a function are deleted when the function ends)

```
/*
DigitalReadSerial

Reads a digital input on pin 2, prints the result to the Serial Monitor

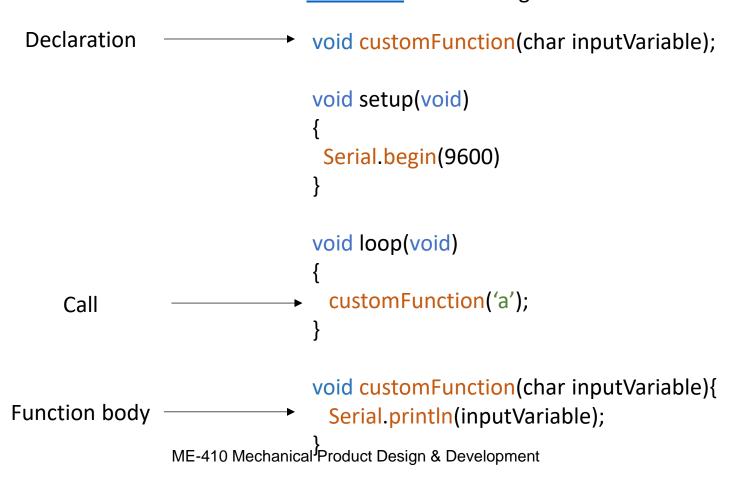
This example code is in the public domain. http://www.arduino.cc/en/Tutorial/DigitalReadSerial */
```

```
// digital pin 2 has a pushbutton attached to it.
Give it a name:
int pushButton = 2;

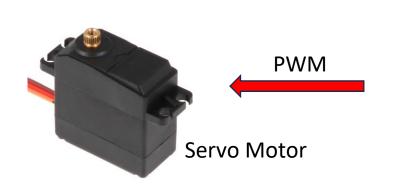
// the setup routine runs once when you press reset:
void setup() {
    // initialize serial communication at 9600 bits per second:
    Serial.begin(9600);
    // make the pushbutton's pin an input:
    pinMode(pushButton, INPUT);
}
```

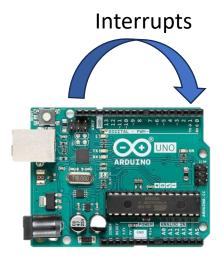
```
// the loop routine runs over and over again
forever:
void loop() {
   // read the input pin:
   int buttonState = digitalRead(pushButton);
   // print out the state of the button:
   Serial.println(buttonState);
   delay(1);   // delay in between reads for
stability
}
```

Lots of examples are available under *File* -> *Examples* In the Arduino IDE



Basics in Arduino programming


Functions


Please look at the <u>datasheet</u> before using built-in functions

EPFL Demo: Programming the Uno Using the Arduino IDE

Serial: motor angle

